Indian Statistical Institute	
First Semester 2005-2006	
Mid Semestral Exam	
B.Math II Year	
Differential Equations	
Date:12-09-05	[Max marks : 35]
	Indian Statistical Institute First Semester 2005-2006 Mid Semestral Exam B.Math II Year Differential Equations Date:12-09-05

Answer all the questions

1. Define a [continuous] function $g: \mathbb{R}^2 \to \mathbb{R}$ by g(-x, -y) = -g(x, y),

$$g(x,y) = y \qquad \text{if } 0 \le y \le \sqrt{x} \\ = -y + 2\sqrt{x} \qquad \text{if } \sqrt{x} \le y \le 2\sqrt{x} \\ = 0 \qquad \text{otherwise}$$

Define
$$F: R \longrightarrow R$$
 by $F(x) = \int_{-1}^{1} g(x, y) dy$

Show that

a)
$$F(x) = x$$
 for $|x| < 1/4$
b) $F'(0) = 1$
c) $\frac{\partial g}{\partial x}(0, y) = 0$ for $-1 < y < 1$
d) $F'(0) \neq \int_{-1}^{1} \frac{\partial g}{\partial x}(0, y) dy$
[5]

2. Let $g \in C_0^{\infty}(R)$, g(0) = 1 and g be real valued. Define $f(x,y) = g(x^2 + y^2)$. Show that one cannot find $u \in C^1(R^2)$ such that

$$\left[x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right]u(x,y) = f(x,y)$$
[4]

$$u(x,y) = \int P(t, x,y)f(t)dt$$

Show that $\lim_{y \to 0} |u(x_0, y) - f(x_0)| = 0$ [2]

c) Show that
$$\frac{\partial u}{\partial x}(x,y) = \int \frac{\partial}{\partial x} P(t, x, y) f(t) dt$$
 [4]

4. a) Let f_1, f_2, \ldots be a sequence of real valued C^1 functions on [a, b]. If $f_n \to g$ uniformly on [a, b] and $f'_n \to h$ uniformly on [a, b] show that g is differentiable and g' = h [1]

b) Let
$$f(x) = \sum_{1}^{\infty} k^{-3} \sin(kx)$$
 show that f is differentiable on $[0, 2\pi]$
[2]

- 5. Let $g : [0, \pi] \longrightarrow R$ be any C^1 function with $g(0) = g(\pi)$. Show that there exists real numbers a_0, a_2, \ldots with $\sum |a_k| < \infty$ and $g(x) = \sum_{k=0}^{\infty} a_k \cos[kx]$ [4]
- 6. Find all solutions of

$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
[3]

- 7. $a, h: R \to R$ are C^1 functions, $u: R^2 \longrightarrow R$ is a C^1 function satisfying $a(u(x, y))u_x + u_y = 0$, u(x, 0) = h(x) Find u. [5]
- 8. a) If $u: R^2 \longrightarrow R$ is a C^2 function satisfying $u_{xx} c^2 u_{yy} = 0$, [where c is a non zero constant]. Show that there exist functions f, g such that

$$u(x,y) = f(x+cy) + g(x-cy)$$
[2]

b) Take c = 1 in (a). Let PQRS be a rectangle in R^2 with sides parallel to the lines x + y = 0 and x - y = 0 show that

$$u(P) + u(R) = u(Q) + u(S)$$
[2]